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S-matrix for magnons in continuous Heisenberg 
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Brook, LI, New York 11794, USA 

Received 8 September 1982 

Abstract. The S-matrix for magnons in the continuous Heisenberg chain is obtained with 
the quantum inverse method. Using the S-matrix for the strings of magnons, the position 
changes and phase shifts of classical solitons in scattering are derived. 

In a recent paper we showed that the energy spectrum of magnons of the continuous 
Heisenberg ferromagnetic chain can be investigated by using the quantum inverse 
method (Zhao 1982). In this note we will show that, by the same method, the S-matrix 
for the magnons can be obtained, and the scattering of classical solitons can be studied 
by using the S-matrix for the strings of magnons. 

The Hamiltonian for the continuous Heisenberg ferromagnetic chain, by choosing 
suitable units, can be written as 

where s is the spin density and satisfies the commutator 

[si(x), sk(y)]=iEik's'(x) S ( X  -y), j ,  k, 1 = 1,2 ,3 .  (2) 

(s3k )> + f, ( s ' , ~ ( x ) ) + o  as IxI+oo. (3) 

We assume the boundary condition 

As in our previous work (Zhao 1982), we first replace the continuous chain by a 
discrete one with finite length L, and we assume that the lattice spacing A is small. 
We define 

where A is the spectrum parameter, N = L/A is a large integer, 
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L,(A) is a matrix: 

where 
x n  

s: = dxs'(x) and s i  =si*is:. JX+ 
The commutation relations of a, a*,  b and b* for A # p have been previously 

obtained (Zhao 1982). A careful treatment of the limiting process L + 00 yields the 
following relations, which are generalisations of those obtained before (Zhao 1982): 

b (A)b*(p = (A - p ) 2 + ( A p ) 2  b*(h )b  ( p )  + 2.r rApu*(A)~ ( p )  S(A - F), 
(A - p  +ie)2  

(10) 

[ a ( A ) ,  a ( p ) l = [ a ( A ) ,  a * ( ~ ) l = [ b ( A ) ,  b(p)1=0, (11) 

where E is infinitesimal and positive. Define R(A) = a-'(A)b(.\)/(&h). From the 
above relations we have 

R*(A)R*(p) = S(P,  A)R*(cL)R * ( A ) ,  

R (A )R * ( p )  -S (&  P)R * (F  )R ( A )  = S(A - p ) ,  

S(p,A)=(F-'-A-'-i)/(p-l-A-l+i). (14) 

(12) 

(13) 

where 

R(A) and R * ( A )  are the annihilation and creation operator, respectively, for a magnon 
ofmomentump=tan- 'A. If A i  i s realandv(Al)<v(A2)< . . .  <v(A,),whereu(Ak)is 
the group velocity for the magnon corresponding to the momentum Pk = tan-' A k ,  then 
\ A l ,  A 2 , .  . . , A,)=R*(A1). . . R*(A, ) lO)  is an in-state, and ]A,, A,-' , .  . . , A1(0) is an out- 
state. R*(A1). . . R*(An)lO) and b * ( A l ) .  . . b*(A,)IO) have the same eigenvalue of a ( A )  
but with different normalisation. S ( p ,  A )  is the S-matrix element for two magnons 
with v ( A ) < u ( p ) .  

From the above discussion, it is easily shown that the magnon number is conserved, 
and only pure elastic scattering can occur. The S-matrix element for \in> = ] A l ,  , . . , A,) 
to /out) = ]A,, . . . , A l )  is 

The above S-matrix for n particles (magnons) 
This is a general property of the S-matrix for 1 + 1 
have infinite conservation laws. This property 
interaction system (Yang 1968). 

is factorised into two-particle ones. 
dimension integrable models which 
was first found in the &function 



Letter to the Editor L755 

The magnons can be grouped into strings (bound states). To construct a string we 
must continue the spectrum parameters into the complex plane. As the magnon 
number n in a string is large (n  >> l), the string corresponds to a classical soliton (Zhao 
1982). 

It is easy to write down the S-matrix for the scattering of N strings and of 
strings-magnons. As an example, we consider the scattering of two strings. The 
complex spectrum parameters of the two strings are, respectively, 

1 . .  AJrl = a  -gj ,  j = -(m - l),  -(m -3),  . . . , (m - l), 
1 (16) 

p;' = p  -SI, 1 = -(n - l), -(n - 3), . . . , (n  - l), 

where 

a = t[m cot P + (m2 cot2 P + m2 - I)"~],  p = ;[n cot Q + (n cot2 Q + n - 1)1'2]. 

(17) 

P and Q are the total momentum of the two strings of magnons respectively, and are 
real. For n >> 1 and m >> 1, we have a = ;m cot iP and @ = i n  cot ;Q. We assume 
aE(P, m)/aP <dE(Q, n) /dQ,  where E is the energy of a string. The S-matrix element 
of the scattering of the two strings of magnons is 

Now, let us consider the classical limit. If m >> 1 and n >> 1, we have approximately 

@ = i l n s  --2[(5;l - l i ' ) l n ( [ ~ ~  -l;')-((~' -&') ln(5;' -~~*- ' )+cc ] ,  (19) 

where 5;' = a  -im/2, 5;' = @  -in/2. 51 and l2 are the zeros of the eigenvalue of 
a ( A )  in the classical limit. Each zero corresponds to a classical soliton. 

From classical mechanics we know that the dynamical variables at time t = --03 

can be transformed to those at t = 00 by a canonical transformation. The generating 
function of this transformation in our case is the classical limit of ilns, i.e. @. The 
position changes and the phase shifts of the solitons in scattering can be calculated 
from @ (Kulish et a1 1976). The results are 

where Axoi is the position change of the ith soliton, and A& the phase shift. Equations 
(20)-(23) coincide with those obtained by Fogedby (1980) in classical theory. 
(Takhtajan's Adoi (Takhtajan 1977) should have a minor correction as pointed out 
by Fogedby (1980).) Equations (20)-(23) can be easily generalised to the case of 
N-soliton scattering. 
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